The number of independent sets in a connected graph and its complement

نویسندگان
چکیده

منابع مشابه

Connected Domination Number of a Graph and its Complement

A set S of vertices in a graph G is a connected dominating set if every vertex not in S is adjacent to some vertex in S and the subgraph induced by S is connected. The connected domination number γc(G) is the minimum size of such a set. Let δ(G) = min{δ(G), δ(G)}, where G is the complement of G and δ(G) is the minimum vertex degree. We prove that when G and G are both connected, γc(G) + γc(G) ≤...

متن کامل

the survey of the virtual higher education in iran and the ways of its development and improvement

این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.

connected cototal domination number of a graph

a dominating set $d subseteq v$ of a graph $g = (v,e)$ is said to be a connected cototal dominating set if $langle d rangle$ is connected and $langle v-d rangle neq phi$, contains no isolated vertices. a connected cototal dominating set is said to be minimal if no proper subset of $d$ is connected cototal dominating set. the connected cototal domination number $gamma_{ccl}(g)$ of $g$ is the min...

متن کامل

The Number of Independent Sets in a Regular Graph

We show that the number of independent sets in an N -vertex, d-regular graph is at most (2−1), where the bound is sharp for a disjoint union of complete d-regular bipartite graphs. This settles a conjecture of Alon in 1991 and Kahn in 2001. Kahn proved the bound when the graph is assumed to be bipartite. We give a short proof that reduces the general case to the bipartite case. Our method also ...

متن کامل

The Number of Independent Sets in a Grid Graph

Let Gm,n be the m×n grid graph. That is, the vertices of Gm,n are the (m+1)(n+1) points (i, j) (0 ≤ i ≤ m, 0 ≤ j ≤ n) in the plane, and its edges are all of the pairs (i, j), (i′, j′) of vertices for which |i − i′| + |j − j′| = 1. Let f(m,n) be the number of independent sets of vertices in Gm,n. We study the growth of f(m,n). The figure below shows an independent set S in G4,6. figure=grid.eps ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Art of Discrete and Applied Mathematics

سال: 2018

ISSN: 2590-9770

DOI: 10.26493/2590-9770.1258.c2b